Орбиты планет Солнечной системы

Орбиты планет, находящихся в Солнечной системе – это незримый путь, которые описывают данные тела вокруг центральной звезды – Солнца. Они могут быть различными по протяженности и вытянутости, что влияет на сезонность климата небесных тел и температуру их поверхности. Какую же форму имеют орбиты планет в Солнечной системе, и как это влияет на сами небесные тела?

схема движения небесных тел
схема движения

Перигелий, афелий и эксцентриситет

Разберемся с основными характеристиками орбитального пути. Все планеты Солнечной системы движутся вокруг Солнца. Проходя по своей траектории данное тело имеет точки наибольшей удаленности и приближенности к центральной звезде. Они называются соответственно афелий и перигелий. От их значения напрямую зависят климатические условия на том или ином теле.

Перигелий и афелий планет нашей системы имеют следующие величины:

  • Меркурий: 46 – 69,82 млн. км;
  • Венера: 107,5 – 109 млн. км;
  • Земля: 147,1 – 152,1 млн. км;
  • Марс: 206,7 – 249,2 млн. км;
  • Юпитер: 740,7 – 816 млн. км;
  • Сатурн: 1,35 – 1,5 млрд. км;
  • Уран: 2,73 – 3,01 млрд. км;
  • Нептун: 4,45 – 4,5 млрд. км.
детальная схема движения планет
детальная схема

По представленным величинам видно, что у одних планет разница между расстоянием в минимальной и максимальной удаленности от Солнца крайне мала, а у других – значительна. С этим выводом неразрывно связан другой термин, необходимый для описания орбиты планет, — эксцентриситет.

Эксцентриситет траектории, по которой движется планета, определяет ее форму. Для вычисления этого параметра необходимо знать большую и малую полуоси орбиты планеты. Для каждой формы орбитального пути есть свое числовое значение эксцентриситета:

  • 0 – круг;
  • От 0 до 1 – эллипс;
  • 1 – парабола;
  • От 1 до ∞ — гипербола;
  • ∞ — прямая.

Все орбиты планет Солнечный системы имеют значение эксцентриситета больше нуля, т.е. обладают эллипсовидной формой. При этом самые сжатые, схожие с круговыми, орбиты в Солнечной системе наблюдаются у Венеры и Нептуна, а наиболее вытянутые – у Меркурия и Марса.

Планетарный год

Полный оборот небесного тела по своей траектории называется сидерическим периодом вращения. Для планет этот термин имеет синоним «планетарный год». Его протяженность зависит от среднего радиуса орбиты и скорости, с которой планета совершает орбитальное вращение.

Для удобства описания планетарные года рассчитывают в  земных сутках и годах. Так, например, на Меркурии год длится 0. 24 земных года, или 89 земных суток. Это наиболее короткий планетарный год в Солнечной системе. А самым долгим считается год на планете Нептун, длящийся 164 года земных.

Фактор, отвечающий за смену времен года

За сезонность на планетах Солнечной системы отвечает угол наклона оси вращения к орбите. Чем меньше угол, тем стабильнее погода на небесном теле и нет смены пор года. Также сезонности не бывает на небесных телах с углом наклона более 90°.

Смена сезонов характерна для объектов с углом наклона оси в пределах 20-30 градусов:

  • Земля (23,3°);
  • Марс (25,2°);
  • Сатурн (29°);
  • Нептун (30°).

«Лето» и «зима» также есть на Меркурии, несмотря на практически отсутствующий наклон оси. Это связано с высоким эксцентриситетом его орбиты. Разница между температурами в точках перигелия и афелия на Меркурии составляет 620 градусов Цельсия.

Таким образом, величина и форма пути, который описывает объект вокруг Солнца, очень влияют на формирование температурных условий на нём. Именно невысокий эксцентриситет и небольшая удаленность движения Земли, а также оптимальный угол наклона оси сделали её температуру наиболее комфортной для существования живых организмов.

Ссылка на основную публикацию